Photorespiration connects C3 and C4 photosynthesis.

نویسندگان

  • Andrea Bräutigam
  • Udo Gowik
چکیده

C4 plants evolved independently more than 60 times from C3 ancestors. C4 photosynthesis is a complex trait and its evolution from the ancestral C3 photosynthetic pathway involved the modification of the leaf anatomy and the leaf physiology accompanied by changes in the expression of thousands of genes. Under high temperature, high light, and the current CO2 concentration in the atmosphere, the C4 pathway is more efficient than C3 photosynthesis because it increases the CO2 concentration around the major CO2 fixating enzyme Rubisco. The oxygenase reaction and, accordingly, photorespiration are largely suppressed. In the present review we describe a scenario for C4 evolution that not only includes the avoidance of photorespiration as the major driving force for C4 evolution but also highlights the relevance of changes in the expression of photorespiratory genes in inducing and establishing important phases on the path from C3 to C4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How to make a C4 plant: insight from comparative transcriptome analysis.

Rubisco (for ribulose-1,5-bisphosphate carboxylase/oxygenase), the enzyme that catalyzes the first major step in carbon fixation, is notoriously inefficient in this role, owing to its function as an oxygenase as well as a carboxylase. Photorespiration, the pathway followed when Rubisco catalyzes the oxygenation rather than carboxylation of the substrate ribulose-1,5-bisphosphate, can reduce the...

متن کامل

C2 photosynthesis generates about 3-fold elevated leaf CO2 levels in the C3–C4 intermediate species Flaveria pubescens

Formation of a photorespiration-based CO2-concentrating mechanism in C3-C4 intermediate plants is seen as a prerequisite for the evolution of C4 photosynthesis, but it is not known how efficient this mechanism is. Here, using in vivo Rubisco carboxylation-to-oxygenation ratios as a proxy to assess relative intraplastidial CO2 levels is suggested. Such ratios were determined for the C3-C4 interm...

متن کامل

The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria

C4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic and analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) is a prerequisite for the evolutio...

متن کامل

Recruitment of pre-existing networks during the evolution of C4 photosynthesis.

During C4 photosynthesis, CO2 is concentrated around the enzyme RuBisCO. The net effect is to reduce photorespiration while increasing water and nitrogen use efficiencies. Species that use C4 photosynthesis have evolved independently from their C3 ancestors on more than 60 occasions. Along with mimicry and the camera-like eye, the C4 pathway therefore represents a remarkable example of the repe...

متن کامل

A generalized stoichiometric model of C3, C2, C2+C4, and C4 photosynthetic metabolism.

The goal of suppressing photorespiration in crops to maximize assimilation and yield is stimulating considerable interest among researchers looking to bioengineer carbon-concentrating mechanisms into C3 plants. However, detailed quantification of the biochemical activities in the bundle sheath is lacking. This work presents a general stoichiometric model for C3, C2, C2+C4, and C4 assimilation (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 67 10  شماره 

صفحات  -

تاریخ انتشار 2016